Skylark CO₂ Dispersion Project - update

Simon Gant, Fluid Dynamics Team, Health and Safety Executive (HSE) Science and Research Centre Daniel Allason, Energy Systems, DNV Spadeadam

CCSA Health and Safety Task Subgroup meeting on CO_2 venting 27 November 2023

© Crown Copyright HSE 2023

Outline

- Quick summary of Skylark project plans
 - Work packages
 - Expressions of interest
- CO₂ venting discussion
 - Motivation
 - Questions for operators and consultants

PROTECTING PEOPLE AND PLACES

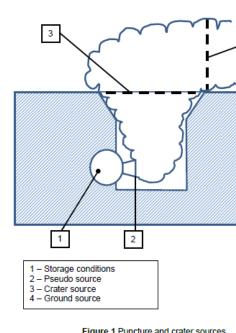
Timeline of recent meetings where Skylark was discussed

- 20 22 June: George Mason University (GMU) Conference on Atmospheric Transport and Dispersion Modeling
- 6 July: UKCCSRC webinar on "Regulating UK CCS deployment: experience to date and research needs"
- **31 August**: CCSA Health and Safety Task Sub-Group meeting
- 6 October: Skylark project meeting at DNV Spadeadam and online
- 31 Oct 1 Nov: PHMSA Pipeline Safety Research and Development Forum, Arlington, Virginia, USA
- 16 17 Nov: Pipeline Safety Trust annual conference, New Orleans, USA

Plans for Joint Industry Project

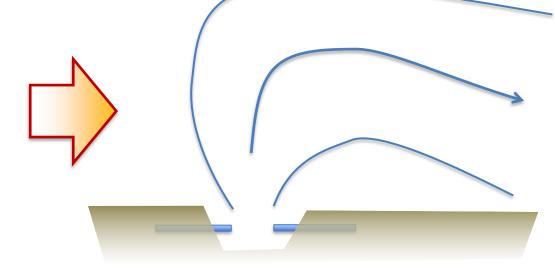
- Work Package 0: Project Management DNV
- Work Package 1: CO₂ pipeline craters and source terms DNV
- Work Package 2: Wind-tunnel experiments University of Arkansas
- Work Package 3: Simple terrain dispersion experiments DNV
- Work Package 4: Complex terrain dispersion experiments DNV
- Work Package 5: Model validation HSE
- Work Package 6: Emergency response NCEC
- Work Package 7: Venting DNV

with support from the **Met Office** for the DNV field trials

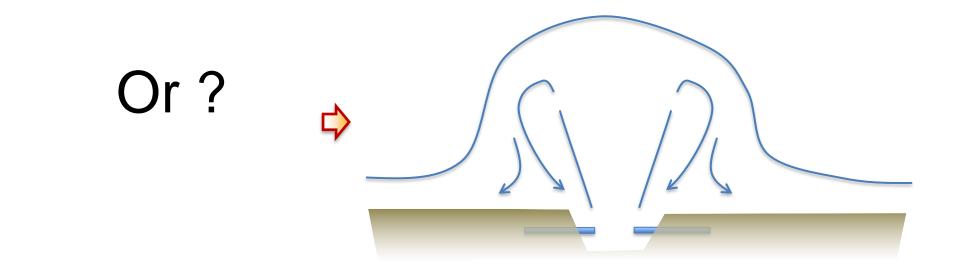

Work Package 1: CO₂ pipeline craters and source terms

- Aim: to improve our understanding of source characteristics for CO₂ pipeline releases from craters, using field-scale experiments
- Review existing data for CO₂ pipeline craters, both punctures and ruptures (some data is not yet publicly available)
- Conduct pipeline rupture tests
 - Both gas-phase and dense-phase CO_2
 - 6-inch or 8-inch diameter buried pipelines
 - At least two soil types (e.g., clay/sandy)
 - Assess size/shape of craters produced in soil
 - Construct realistic-shaped metal crater
 - Perform further tests using metal crater with near-field instrumentation
 - Repeat tests: puncture tests, light and moderate wind speeds

© National Grid / DNV

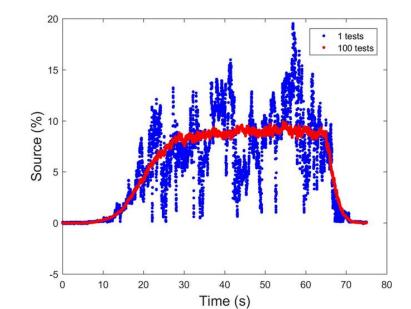


Work Package 2: Wind tunnel studies

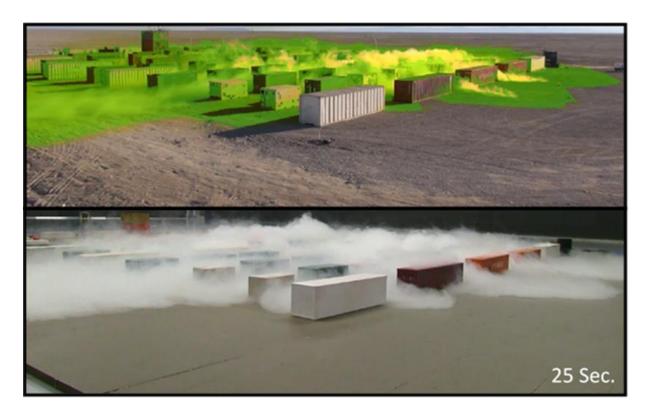

- **Aim 1**: to conduct wind-tunnel experiments on crater source behaviour across a wide range of carefully-controlled conditions, with detailed measurements
- Variables: source area, initial jet velocity and density, wind speed
- Answer question: what are the criteria that control when the plume falls back onto the crater, producing re-entrainment and a source blanket?

When is it:

Aim 2: to conduct wind-tunnel experiments on dense-gas dispersion in sloping terrain, comparing flat terrain to cases with uniform slopes in different directions with range of wind speeds


Aim 3: to conduct wind-tunnel experiments to support complex terrain field trials

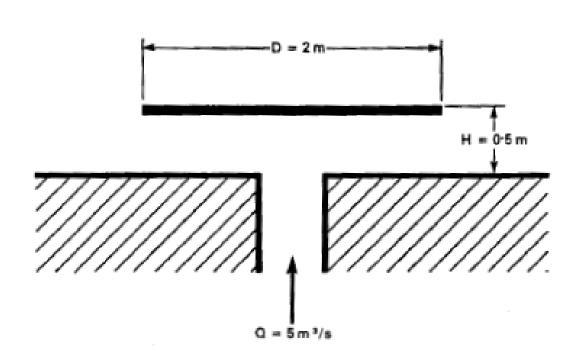
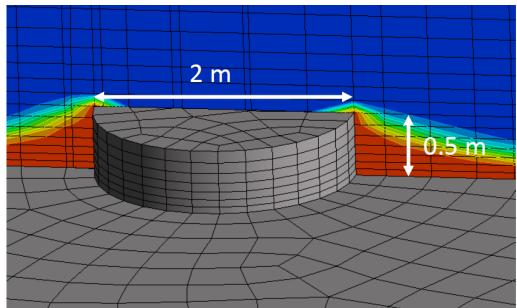
Work Package 2: Wind tunnel studies

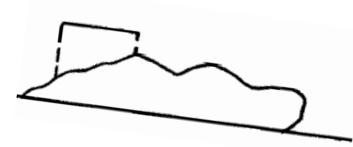

- Chemical Hazards Research Center (CHRC), University of Arkansas Largest ultra-low speed wind tunnel

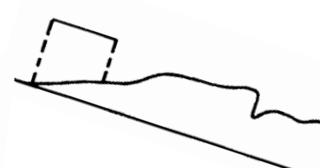
 - 24 m long working section with a 6 m × 2.1 m cross section
 - Capable of wind speeds as low as 0.3 m/s and still air experiments
 - State of the art instruments for velocity and turbulence (LDV and PIV) and gas concentration (FID, PLIF, PID)
 - Data from CHRC wind tunnel has previously used for:
 - PHMSA/NFPA model evaluation protocol for LNG siting applications
 - DNV Phast model development
 - Jack Rabbit II chlorine trials assessment

Work Package 3: Simple sloping terrain dispersion exps

- **Aim**: to conduct dense-gas dispersion experiments on "simple" uniform sloping terrain to provide data to validate dispersion models
- Idealised gaseous CO_2 source configuration to produce radially-spreading cloud, using a circular outlet similar to the Thorney Island dispersion trials - Avoid modelling uncertainties associated with two-phase CO₂ release from crater
- Main focus of experiments is to understand effect of slope on dense gas behaviour


Fig.22.4 Geometry of ground-level source for continuous release experiments



rig. 22.2 Outlet from the gas supply duct at the release point

© Crown Copyright HSE 2023

Shallow slope

Steep slope

How does dispersion behaviour compare to flat terrain?

McQuaid & Roebuck (1985) Thorney Island https://admlc.com/thorney-island/ **CFD** modelling https://doi.org/10.1504/IJEP.2018.093026

Work Package 4: Complex Terrain Dispersion Exps

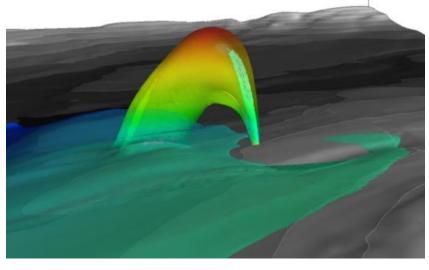
- Aim: to conduct series of CO₂ release experiments with complex terrain including valleys, hills, obstacles, changing roughness, buildings etc.
- DNV Spadeadam ideally suited to these tests, with multiple possible release locations and large exclusion distances
- Proposed to use mobile rig with 20 40 tonne CO₂ capacity with option to use preformed craters
- More challenging configurations for dispersion modelling
- Aim to answer practical questions:
 - How long does CO₂ persist in depressions?
 - What is the effect of obstacles (trees, hedgerows, buildings)?

~15m in 300m

~3m in 500m

DNV Spadeadam

~3m in 500m


Image © 2023 Getmapping plc Image © 2023 Maxar Technologies

DNV Google Earth

Work Package 5: Model validation

- **Aim**: to test and validate dispersion models that can be used for CO_2 pipeline risk assessment and emergency planning/response
- Many international modelling teams and software developers are keen to test and validate their models against this data (DNV, Gexcon, Kent, CERC, MES etc.)
- Opportunity to involve research groups who are developing rapid dispersion models (e.g., Texas A&M, Leeds University) to inform future commercial software development
- Aim to have an open and collaborative approach, like in Jack Rabbit projects
- Welcome input from government labs, industry, academia and consultants
- Aim to test spectrum of models, e.g., correlations, Gaussian puff, shallow layer, machine learning, CFD
- Modellers given access to data in return for sharing results and collaborating Requests to join project approved by project steering committee Modelling exercises coordinated by HSE

Work Package 6: Emergency response

- **Aim**: to engage with emergency responders and make best use of the CO_2 dispersion trials: help to prepare responders to deal with possible CO_2 release incidents
- Identify knowledge gaps in emergency response, working with Hazmat teams, Fire and Rescue Services and other emergency responders
- Test gas sensors, breathing apparatus, PPE etc. used by responders in the trials?
- Test vehicles can be used to evacuate casualties? (learning from Satartia incident)
- Opportunity for emergency responders to witness trials and review video footage as learning and training exercise
- Work package led by UK National Chemical Emergency Centre (NCEC)

Examples of emergency responders' involvement in the Jack Rabbit II project https://www.uvu.edu/es/jack-rabbit/ © Images copyright DHS S&T CSAC and UVU

Work Package 7: Venting

- **Aim**: to assess if CO_2 vents could give rise to harmful concentrations downwind, near ground level
- Input from sponsors sought on defining range of conditions to be tested experimentally: vent diameter, temperature, pressure
- Planned to test:
 - Two vent diameters (up to 2" NB diameter pipes)
 - Dense, supercritical and gaseous CO_2 —
 - Repeated tests on three days (low, moderate and high winds)
- Measure outflow rate, vent conditions (pressure / temperature), CO₂ concentrations near ground level, plume temperature, videos (normal, thermal and high-speed)
- Conducted alongside other work packages whilst rigs are available Is interest in testing certain valve designs, following reports of some blowdown values blocking in the open position due to solid CO_2 ?

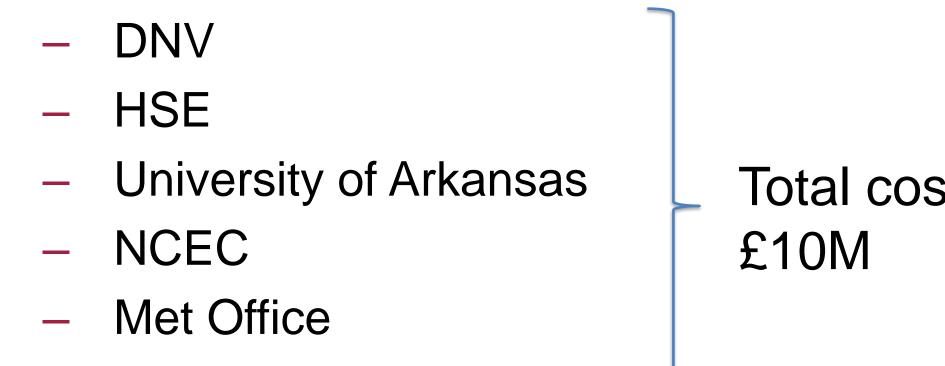
© National Grid / DNV

Work Package 0: Project Management

- Project delivery team
 - DNV (experiments): Dan Allason, Rob Crewe, Keith Armstrong
 - DNV (modelling): Ann Halford, Karen Warhurst, Mike Harper, Jan Stene and Gabriele Ferrara HSE: Simon Gant, Zoe Chaplin and Rory Hetherington

 - University of Arkansas: Tom Spicer
 - NCEC: Ed Sullivan
 - Met Office: Matt Hort and Frances Beckett
 - External advisers: Steven Hanna (USA), Joe Chang (Rand Corporation), Gemma Tickle (UK)
- Technical steering group
 - Representative from each of the project sponsors (or their appointed technical consultant)
- Modellers working group
 - Representative from each of the modelling teams contributing and analysing results
- Safety/environmental regulators participating in peer-review capacity E.g., Environment Agency, PHMSA

Timeline (approximate)


		Project start: summer 2024			
		2024-2025	2025-2026	2026-2027	
WP1	Crater releases				
WP2	Wind tunnel				
WP3	Simple terrain				
WP4	Complex terrain				
WP5	Modelling				
WP6	Emergency response				

Low
Medium
High intensity work

Summary of costs (approx. estimate, no

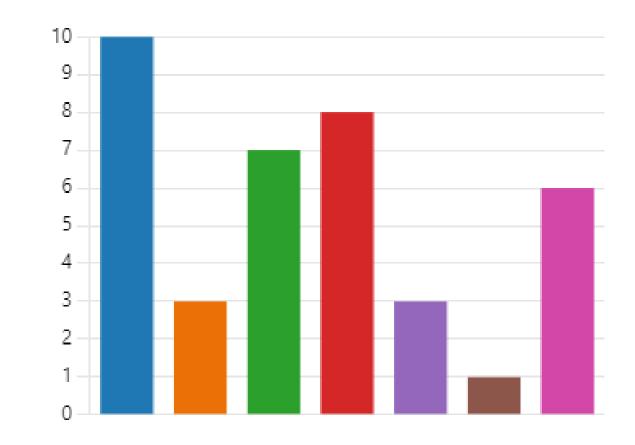
- External advisors
- Ideal ten sponsors: £0.5M per sponsor, spread over 3 years
- Discussions ongoing with US Department of Energy, potential contribution \$1.5M
- Discussions with consortium partners (e.g., PRCI) welcomed

PROTECTING PEOPLE AND **PLACES**

Costs

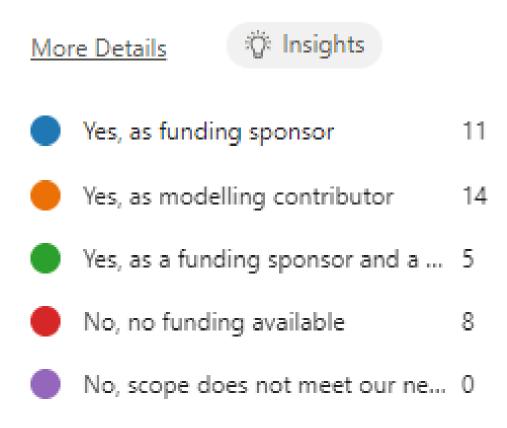
on-binding)	No. Sponsors	Ticket Price (after DESNZ)	Per Year for 3 Years
	4	£1.25M	£416k
	5	£1.0M	£333k
st, approximately	6	£1.0M	£333k
	7	£0.71M	£238k
	8	£0.63M	£208k
	9	£0.56M	£185k
	10	£0.5M	£167k

Department of Energy Security and Net Zero (UK Government) contribution: circa £5M


Interest in Skylark project

Feedback from DNV form circulated in email from Dan Allason on 10 Oct <u>https://forms.office.com/e/DyLkS24C5z</u>

6. What is your Organisation's interest in the project?


More Details

Pipeline Operator
Consultant
Academic
Modeller
Process Operator
Regulator
Other
6

PROTECTING PEOPLE AND **PLACES**

8. Would your organisation be interested in participating in this project?

CO2 Venting

Motivation

- Skylark project team is keen to maximise value of work package on CO₂ venting
- Useful to understand from operators and industry consultants:
 - What are the main knowledge gaps that we need to address?
 - Uncertainties in CO_2 dispersion behaviour?
 - Vent pipe temperatures?
 - Dry-ice formation? (e.g., blocking values in open position)
 - Producing experimental data to validate dispersion model predictions?
 - What operating conditions should be studied?
 - Vent diameter and vent pipe configuration
 - Flow conditions: pressure and temperature (supercritical, dense-phase or gaseous?)
 - Gas composition: presence of impurities from process upset in capture plant?
 - Vent location: stack height, wake effects from nearby obstacles?
 - Modelling of CO₂ dispersion from vent releases: what models and methods are being used? • What validation exists for these modelling approaches? Confidence in model predictions?

- Contact: <u>simon.gant@hse.gov.uk</u>, <u>daniel.allason@dnv.com</u>
- policy

The contents of this presentation, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE

PROTECTING PEOPLE AND **PLACES**

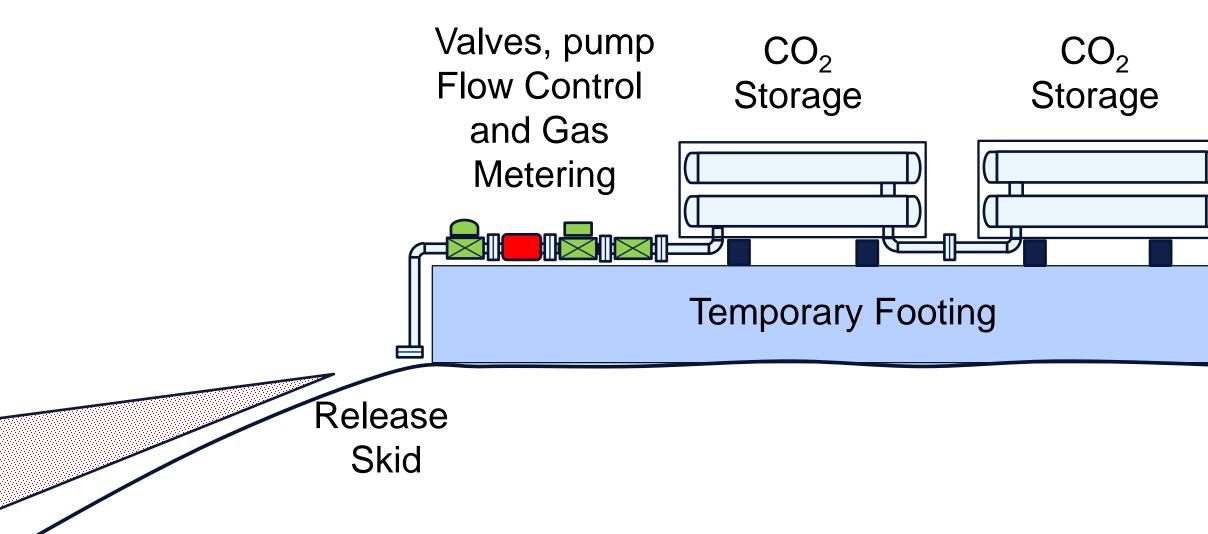
Extra material

Why the name Skylark?

- Historical dispersion trials
 - Avocet: LNG
 - Burro: LNG
 - Coyote: LNG
 - Desert Tortoise: ammonia
 - Eagle: nitrogen tetroxide
 - Falcon: LNG
 - Goldfish: hydrogen fluoride
 - Kit fox: carbon dioxide
 - Jack Rabbit: chlorine and ammonia
 - Red Squirrel: ammonia
 - Skylark: carbon dioxide

PROTECTING PEOPLE AND **Places**

https://www.birdguides.com/gallery/birds/alauda-arvensis/1003602/



Work Package 4: Complex Terrain Dispersion Exps

Concept Rig

Various types of terrain and obstacles

Proposed Layout of Mobile Release ~20 to 40 Te Not to Scale

COOLTRANS Research Programme

Proceedings of the 2014 10th International Pipeline Conference IPC2014 September 29 - October 3, 2014, Calgary, Alberta, Canada

IPC2014-33370

THE COOLTRANS RESEARCH PROGRAMME – LEARNING FOR THE DESIGN OF CO₂ PIPELINES

Julian Barnett National Grid Carbon Solihull, UK

Russell Cooper National Grid Carbon Solihull, UK

Crater size and its influence on releases of CO2 from buried pipelines

by Philip Cleaver¹, Ann Halford¹, Karen Warhurst¹, and Julian Barnett² 1 GL Noble Denton, Loughborough, UK 2 National Grid Carbon, Warwick, UK

4th International Forum on the Transportation of CO2 by Pipeline

Hilton Gateshcad-Newcastle Hotel, Gateshcad, UK 19-20 June, 2013

Proceedings of the 2016 11th International Pipeline Conference IPC2016 September 26-30, 2016, Calgary, Alberta, Canada

IPC2016-64456

ANALYSIS OF A DENSE PHASE CARBON DIOXIDE FULL-SCALE FRACTURE **PROPAGATION TEST IN 24 INCH DIAMETER PIPE**

Andrew Cosham Ninth Planet Engineering Newcastle upon Tyne, UK

Keith Armstrong DNV GL Spadeadam Test & Research Centre, UK Spadeadam Test & Research Centre, UK

David G Jones Pipeline Integrity Engineers Newcastle upon Tyne, UK

Daniel Allason DNV GL

Julian Barnett National Grid Solihull, UK

Crater is covered by vapour blanket - mixture released previously is drawn into flow

Fresh air entrainment possible around plume base © Images copyright National Grid / DNV

COSHER Joint Industry Project

International Journal of Greenhouse Gas Control 37 (2015) 340-353

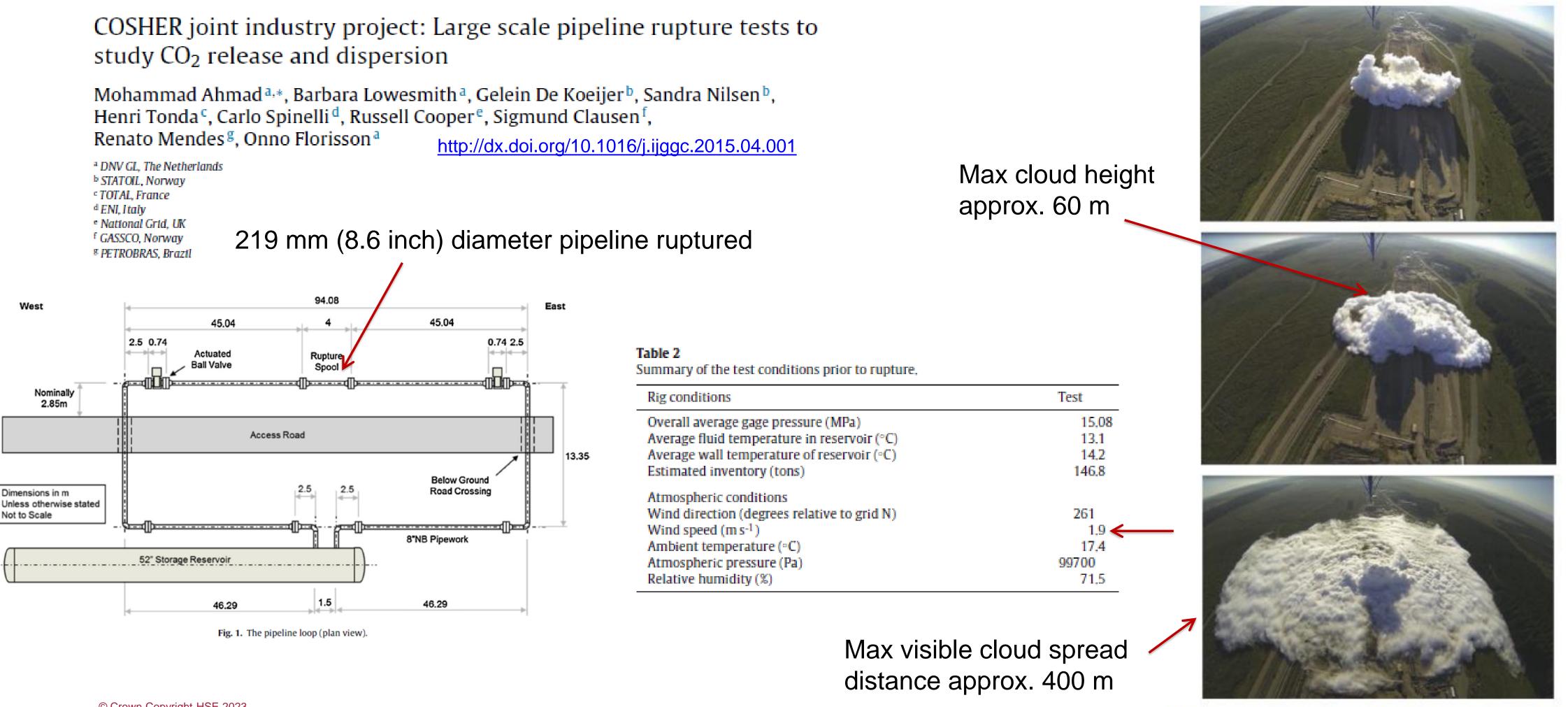


Fig. 4. The visible cloud at 10s (top), 30s and 120s (bottom) after the rupture.

